Go to page content

By Jeff Green

All across the world, energy demands are at an all-time high. This global issue is complex – no two regions are exactly alike and each faces a unique challenge. Managing the global energy crisis requires some mass-scale creative problem solving.

Dr. Kevin Pope, an expert in thermo-fluids and renewable energy in the Faculty of Engineering and Applied Science, and his team of graduate students have joined the global brigade by helping small, remote communities in Newfoundland and Labrador lessen their dependence on diesel-generated power by utilizing readily available natural resources to create renewable energy.

“This is one of the first projects in the world to integrate generation from wind, hydrogen and diesel in an isolated electricity system.” —Dr. Kevin Pope

Home court advantage

As an island in the Atlantic Ocean, positioned at the crossroads of the Labrador and Gulf currents, Newfoundland receives plenty of wind. In fact, the onshore gales of the province have the highest wind velocity of any in Canada. While this can be troubling for many other industries, it’s an advantage for the energy sector.

Dr. Pope and his engineering research team are assisting Nalcor Energy in its integration of wind turbines and hydrogen equipment with the existing diesel generators in Ramea, a small remote community on the south coast of the island. The turbines support the community’s electrical grid during high-load periods. When the load is low the wind energy is used to produce hydrogen gas that is then converted back to electricity through a hydrogen-fuelled generator. This helps support the community when wind speeds are too low to operate the turbines.

Dr. Kevin Pope and his research team are assisting Nalcor Energy with a wind turbine study.
Dr. Kevin Pope and his research team are assisting Nalcor Energy with a wind turbine study.

Searching for new solutions

High precipitation and ice accretion, unsteady wind conditions and limited accessibility are the main barriers the province faces in creating a reliable wind power development. Using data collected in their research, Dr. Pope and his team tackle these challenges by proposing new solutions for site selection, improving performance and energy storage technologies.

Nalcor Energy says the project at Ramea is one of the first in the world to integrate wind, hydrogen and diesel generation into one isolated electrical system. They’ve documented an average reduction in Ramea’s diesel fuel usage by approximately 18 per cent annually. That’s essentially 710 less tonnes of greenhouse gas emissions and a reduction of 190,000 litres of diesel every year.

Dr. Pope recognizes that the solutions he and his team create for Ramea could have a global impact if utilized in other similar regions throughout the world. This capacity to make an impact is the motivation that drives the team to continually overcome the challenges they face in their work.

FunderResearch & Development Corporation of Newfoundland and Labrador

Partner: Nalcor Energy, with funding from the Atlantic Canada Opportunities Agency

This article is part of a bi-weekly collection of research profiles celebrating the contributions of Memorial researchers. Be sure to check back for future profiles.

To receive news from Memorial in your inbox, subscribe to Gazette Now.

Latest News

Message of support

Resources available in times of crisis

Crossroads for classics

Memorial scholars, African universities partner to globalize Classics department

New frontiers

Memorial University entrepreneurs digitalizing the child-care industry

Board of Regents direction on protest activity

Divestment and joint statement discussed at July 11 meeting

A Coast Lines conversation

A Q&A with Coast Lines featured author Michael Crummey

Award-winning advancement

Memorial takes home hardware for whale interpretation, marine outreach